Abstract

Single and few-layered MoS2 materials have attracted attention due to their outstanding physicochemical properties with potential applications in optoelectronics, catalysis, and energy storage. In the past, these materials have been produced using the chemical vapor deposition (CVD) method using MoO3 films and powders as Mo precursors. In this work, we demonstrate that the size and morphology of few-layered MoS2 nanostructures can be controlled, modifying the Mo precursor mechanically. We synthesized few-layered MoS2 materials using MoO3 powders previously exposed to a high-energy ball milling treatment by the salt-assisted CVD method. The MoO3 powders milled for 30, 120, and 300 min were used to synthesize sample MoS2-30, MoS2-120, and MoS2-300, respectively. We found morphologies mainly of hexagons (MoS2-30), triangles (MoS2-120), and fullerenes (MoS2-300). The MoS2 nanostructures and MoO3 powders were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, x-ray diffraction, and thermogravimetric analysis. It was found that MoO3 milled powders exhibit oxygen loss and decrease in crystallite size as milling time increases. Oxygen deficiency in the Mo precursor prevents the growth of large MoS2 crystals and a large number of milled MoO3-x + NaCl promote greater nucleation sites for the formation of MoS2, achieving a high density of nanoflakes in the 2H and 3R phases, with diameter sizes in the range of ∼30–600 nm with 1–12 layers. Photoluminescence characterization at room temperature revealed a direct bandgap and exciting trends for the different MoS2 samples. We envisage that our work provides a route for modifying the structure and optical properties for future device design via precursor engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call