Abstract
Thermoelectric materials provide promising solutions for energy harvesting from the environment. Silver selenide (Ag2Se) material attracts much attention due to its excellent thermoelectric properties under superionic phase transition. However, the optimal thermoelectric figure of merit occurs during the phase transition at high temperatures, making low-temperature devices unable to benefit from their best thermoelectric performance. Here, we tailored the phase transition process of Ag2Se materials with various sizes, and probed the phase transition temperature by in situ transmission electron microscopy. By tuning the motion of the atoms near the surface using size-dependent surface energy, the phase transition-induced process is tailored towards low temperatures. This work paves the way for future phase transition engineering to enhance thermoelectric performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.