Abstract

Wide-band-gap (WB) perovskite devices are promising as the top cell of silicon-perovskite tandem devices to boost the efficiency beyond the Shockley-Queisser limit. Here, we tailor the performance parameters of WB mixed-halide perovskite solar cell with long alkyl chain-substituted fullerene derivatives as an electron transport layer (ETL). The device with C60-fused N-methylpyrrolidine- meta-dodecyl phenyl (C60MC12) demonstrates an enhanced power conversion efficiency of 16.74% with the record open circuit voltage ( VOC) of 1.24 V, an increase by 70 mV with concomitant VOC deficit reduction to 0.47 V. This is achieved by mitigating the recombination loss through the use of highly crystalline C60MC12 film compared to amorphous [6,6]-phenyl-C61-butyric acid methyl ester layer. The device analysis reveals the soothing of the defect activities with shallower defect states and passivation of the interface recombination centers for the device with C60MC12. We ascribe this property to the crystallinity of fullerene derivatives as ETL, which is also important for the optimization of device parameters, besides the band alignment matching of WB perovskite devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.