Abstract

Herein, we report a systematic solvent selection for eco-friendly processed binary all-polymer solar cells (APSCs) with decent power conversion efficiencies (PCEs). Three typical solvents, toluene, o-xylene, and 1,2,4-trimethylbezene, are chosen and compared. The device enabled by o-xylene exhibits the most outstanding PCE of 16.22%, thanks to its favorable morphology, which is to say a well-formed face-on orientation packing motif and a suitable crystallinity and size of phase segregation. Consequently, the solar cell affords sufficient charge generation, as well as efficient and balanced charge transport, which are all positive to pursuing high efficiency. This work offers an understanding of using complete solvent selection as the strategy to realize high-performance devices by sophisticatedly controlling the morphology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.