Abstract

The morphology and porosity of zeolite play a significant role in the activity and selectivity of catalytic reactions. It is a dream to optionally modulate zeolite morphology by regulating the crystallization process on the basis of comprehensively understanding the mechanisms. Herein, a series of MTW zeolite mesocrystals can be consciously fabricated with morphologies from a dense structure to a loose one of an oriented nanocrystallite aggregate by changing the H2O/SiO2 ratio. Their intertwined classical/nonclassical crystallization processes are investigated comprehensively. The results indicate that the crystallization of MTW zeolite takes place by a chain of events, including the formation of wormlike particles (WLPs), their aggregation, and crystallization of aggregates. MTW with a loose structure mainly crystallizes by an internal reorganization after a fast aggregation of WLPs in a concentrated system. On the other hand, the dense structure of MTW is realized via the co-occurrence of a coalescence ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call