Abstract

Porous magnesium oxide (MgO) structures were prepared by thermoplastic processing for use as supports in asymmetric thin film oxygen transport membranes (OTMs). The open porosity, pore size distribution, and resulting gas permeability of the MgO structures were measured for different feedstock compositions and sintering temperatures. For a composition with 19vol% graphite as a pore-former, sintering temperatures of 1300°C and 1400°C, resulted in support porosities of 36% and 26%, respectively, and gas permeabilities of 1.4×10−16m2 and 3.1×10−16m2. Electron microscopy showed that the unexpected increase in gas permeability at temperatures above 1300°C was a result of the growth of macro-pores and the opening of bottle-neck pores which resulted in improved pore connectivity. Mercury intrusion porosimetry experiments confirmed an increase in average pore size for samples sintered above 1300°C, despite a significant decrease in total porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.