Abstract

An Al matrix composite reinforced with 40 vol% graphite flake (Gf) was developed by powder metallurgy as a promising candidate for thermal management applications. Thermal conductivity (TC) along the orientation direction of the composite sintered at 640 °C was measured to be 452 W/m K, which is approximate to the highest TC value theoretically predicted by effective medium approximation model. The three underlying mechanisms responsible for such TC enhancement were clarified in terms of microstructure characterization. First, heat treatment of as-received Gf under Ar + H2 atmosphere resulted in reduction of defects on the edge contributing to improvement of interface thermal exchange efficiency between Al and Gf. Second, image analysis quantitatively confirmed that a step-by-step die filling process using the spherical powder ensures the perfect orientation of Gf in the Al matrix. Third, it was found that the TC of the composite increases with the sintering temperature from 580 to 640 °C. The formation of a small amount of fine platelet-like Al4C3 at the interface between the side surface of Gf and Al matrix indicates the desirable bonding state for minimizing interfacial thermal resistance, beneficial for the overall TC enhancement. Besides, the relevant coefficient of thermal expansion and bending strength were discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.