Abstract
We steer the catalytic performance and morphology of Pd – lanthanum iron manganite (LFM) perovskite interfaces towards optimum NO+CO reactivity in presence of water by following different preparation approaches. Strong CO adsorption for samples without Pd-perovskite interface acts as an inhibitor for adsorption/dissociation of NO, while samples with an extended interface, additionally aided by H2O, show reduced CO poisoning. The optimized use of lattice oxygen for CO oxidation at the phase boundary and its replenishment from NO dissociation allows for the formation of more poisoning-resistant active sites for NO activation. Reaction of species from H2O dissociation with adsorbed CO assists further surface clean off. Enhanced NO reduction activity on the “de-poisoned” interface leads to a pronounced increase in N2 selectivity. Preferred production of NH3 at low NO and high CO and H2O concentration indicates that water gas shift intermediates are linked to increased surface hydrogen activity and increased NH3 formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.