Abstract

Sulfoxaflor is one of the widely used insecticides in agricultural lands to protect crops from insects. Due to its persistent nature, sulfoxaflor is identified as an environmental pollutant. In the present work, the mechanism and kinetics of sulfoxaflor degradation initiated by OH radical addition reaction are studied by using quantum chemical calculations. In the gas phase, the OH addition reaction at the C4 position of sulfoxaflor is found to be the favorable reaction pathway. The rate constant for the initial OH-addition reaction has been studied using canonical variational transition state theory (CVT) over the temperature range of 200-350 K. The initially formed sulfoxaflor-OH adduct intermediate transforms by reacting with O2, H2O, HO2, and NOx (x = 1-2) radicals. The excited-state calculation performed for the stationary points shows that the intermediates formed along the reaction pathway are easily photolyzed in normal sunlight. The toxicity assessment result shows that sulfoxaflor and few of its degradation products are harmful and toxic. The acidification potential of sulfoxaflor was found to be one, which shows its contribution to acid rain. This study gives an in-depth understanding of the mechanism, kinetics, and risk assessment of sulfoxaflor in the environment and aquatic system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call