Abstract

Tailoring the local electron and modulating morphology are the effective ways to improve catalytic performance of the electrocatalysts. Herein, oxygen vacancy-rich CoMoO4@Cu2S heterojunction nanorod arrays electrocatalyst was successfully fabricated on copper foam (VO-CoMoO4@Cu2S HNAs/CF) via the simple solvothermal and calcination routes. The unique VO-CoMoO4@Cu2S HNAs/CF possesses extraordinary activities with an ultralow overpotential of 45 and 181 mV for cathodic hydrogen evolution (HER) and anodic oxygen evolution (OER), respectively, and the low potential of 1.32 V for anodic urea oxidation (UOR) at 10 mA cm−2. More impressively, the assembled VO-CoMoO4@Cu2S HNAs/CF(+/−) cell requires merely 1.47 and 1.33 V to reach 10 mA cm−2 with superb durability for 150 h in 1 M KOH without and with urea, respectively. Multiple characterization and the density functional theory (DFT) calculation results show that the outstanding electrocatalytic performance could be mainly attributed to the synergistic effect of the tailoring the local electron and modulating morphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call