Abstract

Abstract Poly(vinyl alcohol) reinforced with nanohydroxyapatite (PVA-nHA) composite scaffolds were developed by varying the nHA (1%, 2%, 3%, 4%, and 5%, w/v) composition in the PVA matrix by solvent casting technique. The developed composite scaffolds were characterized using scanning electron microscopy (SEM), X-ray powder diffraction (XRD), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, and contact angle measurement. The stability of the composite scaffolds in physiological environment was evaluated by swelling and degradation studies. Further, these composite scaffolds were tested for in vitro bioactivity, hemolysis, biocompatibility, and mechanical strength. SEM micrographs showed a homogenous distribution of nHA (3%, w/v) in the PVA matrix. XRD and ATR-FTIR analysis confirmed no phase contamination and the existence of the chemical bond between PVA-nHA at approximately 2474 cm-1. PVA-nHA composite scaffolds with 3% (w/v) concentration of nHA showed nominal swelling and degradation behavior with good mechanical strength. The mechanical strength and degradation properties of the scaffold above 3% (w/v) of nHA was found to deteriorate, which is due to the agglomeration of nHA. The in vitro bioactivity and hemolysis studies showed improved apatite formation and hemocompatibility of the developed scaffolds. In vitro cell adhesion, proliferation, alkaline phosphatase activity, and Alizarin red S staining confirmed the biocompatibility of the composite scaffolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.