Abstract

HypothesisThe optical properties and humidity response of iridescent films made of cellulose nanocrystal (CNC) and polyethylene glycol (PEG) can be tailored by the incorporation of electrolytes chosen based on specific ion effects (SIE). ExperimentsA series of inorganic salts comprising five different cations and five anions based on the Hofmeister series were mixed with CNC/PEG suspensions, followed by an air-dried process into iridescent solid films. These films were tested in changing relative humidity (RH) environments from 30% to 90% and their photonic properties and mass change monitored. The underlying structures and the mechanism of their formation were quantified in terms of interparticle distance derived from small angle X-ray scattering experiment and pitch size quantified by scanning electron microscope (SEM). FindingsThe specific color and color range of CNC/PEG based films are controlled by a specific anion effect achieved by selection of the salt while the specific cation effect is negligible. The salting-in type anions with the same valency result in a red-shift color when films are in the dried state. The salting-in type leads to a greater color changing range during RH changes than the salting-out type. The resultant mass gain/loss trend is consistent with the color change. In contrast, cations do not show any relationships between salting-in effect and the measured properties as observed for anions. The observed SIE can be used to engineer CNC/polymer-based humidity and bio-diagnostic colorimetric indicator devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.