Abstract

The enhancement of oxygen reduction reaction (ORR) activity can significantly boost the performance of fuel cells. MXene-supported transition metals with strong metal-support interactions (SMSI) are an effective strategy to increase the catalytic activity and durability while decreasing the usage of noble metals. Herein, a series of composites of transition-metal atoms (Ni, Pd, Pt, Cu, Ag, and Au) deposited on V2C MXene are designed as potential catalysts for ORR using density functional theory. The calculation results demonstrate that all the transition metals prefer to form a monolayer on V2C (TMML/V2C) with high thermodynamic stability because of SMSI, in which the Pd, Pt, Ag, and Au monolayers exhibit high chemical stability during the ORR process. PtML/V2C exhibits the highest activity toward ORR with the overpotential down to 0.38 V and the largest energy barrier of 0.48 eV. The excellent catalytic performance originates from the modification of the electronic structure by the V2C support because of SMSI. Our studies elucidate the SMSI between transition-metal atoms and V2C MXene from the atomic level and thus rationally design the ORR catalyst at the cathode of fuel cells to enhance the activity while possessing high stability and less Pt usage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.