Abstract

Exploiting earth-abundant and low-cost photocatalysts for high efficiency photocatalytic water splitting is of profound significance. Herein, we report an improved photocatalytic water splitting activity by P and As substitution at the N-site in the C2N monolayer using state-of-the-art hybrid density functional calculations. Our results show that the band gap can be reduced in C2N by increasing the concentrations of P and As substitution, and at the same time the obtained band gap value is higher than the free energy of water splitting except for As with concentrations of x = 0.333. This indicates that these new compositions of P/As substituted C2N monolayers are thermodynamically suitable to drive hydrogen evolution reaction. The calculated effective mass of charge carriers illustrates that charge transfer to the reactive sites would be easier in the substituted system than the pure C2N, and also our results suggest that the recombination rate would be lower in the substituted system, indicating the enha...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call