Abstract

The charge compensation in undoped GaP single crystals is investigated by modeling the Fermi level position for various concentrations of shallow and deep donors and acceptors. The model is based on the numerical solution of the charge neutrality equation and allows for calculating the Fermi energy in the temperature range of 1 –1000 K. The experimental studies of the electronic properties and concentrations of grown-in defect centers are performed by the high-resolution photoinduced transient spectroscopy (HRPITS). We show that at the shallow acceptor concentration below 1x1015 cm-3 and the concentration of deep-level defects ~3x1015 cm-3 obtaining undoped GaP with the semi-insulating (SI) properties is possible by substantial reducing the residual concentration of shallow donor impurities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.