Abstract
Many diverse applications utilize hydrogels as carriers, sensors, and actuators, and these applications rely on the refined control of physical properties of the hydrogel, such as elastic modulus and degree of swelling. Often, hydrogel properties are interdependent; for example, when elastic modulus is increased, degree of swelling is decreased. Controlling these inverse dependencies remains a major barrier for broader hydrogel applications. We hypothesized that polymer cross-linkers with varied chain flexibility would allow us to tune the inverse dependency between the elastic modulus and the degree of swelling of the hydrogels. We examined this hypothesis by using alginate and poly(acrylic acid) (PAA) modified with a controlled number of methacrylic groups as model inflexible and flexible cross-linkers, respectively. Interestingly, the polyacrylamide hydrogel cross-linked by the inflexible alginate methacrylates exhibited less dependency between the degree of swelling and the elastic modulus than the hydrogel cross-linked by flexible PAA methacrylates. This critical role of the cross-linker's inflexibility was related to the difference of the degree of hydrophobic association between polymer cross-linkers, as confirmed with pyrene probes added in pregel solutions. Furthermore, hydrogels cross-linked with alginate methacrylates could tune the projection area of adhered cells by solely altering elastic moduli. In contrast, gels cross-linked with PAA methacrylates failed to modulate the cellular adhesion morphology due to a lower, and smaller, elastic modulus range to be controlled. Overall, the results of this study will significantly advance the controllability of hydrogel properties and greatly enhance the performance of hydrogels in various biological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.