Abstract

In this effort, the electronic-structure modulation strategy through nano-alloying was rationally designed to fabricate Fe-Ni alloy particles embedded in an N-doped carbon nanobox. The as-developed catalyst outperformed the commercialized noble-metal benchmarks with a decent half-wave potential of 0.891 V for ORR and a small overpotential of 325 mV at 10 mA/cm2 for OER both in 0.1 M KOH solution. Beyond that, a highly-efficient regenerative Zn-air battery was also successfully constructed, evidenced by a small potential gap of 0.664 V (between Ej=10 and E1/2), a high specific capacity of 763 mAh/g, a large peak power density of 270 mW/cm2, and robust stability. Ultraviolet photoelectron spectroscopy and theoretical simulation confirmed that the alloying of Ni into Fe could well manipulate the electronic structure, leading to favorable intermetallic charge-transfer and then downshifting the d-band center of Fe adsorption sites, all of which help to significantly lower the reaction barriers of the involved intermediates during the electrocatalytic ORR/OER processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call