Abstract

The use of plasmonic nanoplatforms has received increasing interest in a wide variety of fields ranging from theranostics to environmental sensing to plant biology. In particular, the development of plasmonic nanoparticles into ordered nanoclusters has been of special interest due to the new chemical functionalities andoptical responses that they can introduce. However, achieving predetermined nanocluster architectures from bottom-up approaches in the colloidal solution state still remains a great challenge. Herein, we report a one-pot assembly approach that provides flexibility in precise control of core-satellite nanocluster architectures in the colloidal solution state. We found that the pH of the assembly medium plays a vital role in the hierarchy of the nanoclusters. The architecture along with the size of the satellite gold nanoparticles determines the optical responses of nanoclusters. Using electron microscopy and optical spectroscopy, we introduce a set of design rules for the synthesis of distinct architectures of silica-core gold satellites nanoclusters in the colloidal solution state. Our findings provide insight into advancing the colloidal solution state nanoclusters formation with predictable architectures and optical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call