Abstract

The adsorption of two types of cationic polyacrylamides in the presence of a background electrolyte was studied on substrates including silicon oxide, kraft pulp fibres and thin films of regenerated cellulose. One of the polyelectrolytes was a conventional cationic polyacrylamide (MeCPAM) and the other was a benzyl-containing derivative of cationic polyacrylamide (BzCPAM). It was found that the aromatic substituents of BzCPAM strongly enhanced the adsorption on substrates of hydrophobically modified silicon oxide when a background electrolyte was present. A similar effect was also seen in the case of BzCPAM adsorption on unbleached pulp fibres, but in this case MeCPAM also exhibited a strong adsorption at high background electrolyte concentrations. On bleached pulp fibres, BzCPAM maintained a high adsorption up to a concentration of 100 mM NaCl whereas MeCPAM adsorption showed a significant decrease at this salt concentration. On model cellulose films, the adsorption of BzCPAM was similar to that of MeCPAM and the non-ionic interactions with cellulose appeared weak, since there was no adsorption of either polyelectrolyte in 300 mM NaCl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call