Abstract

AbstractAlthough the flexibility of the quasi−solid polymer electrolyte favors its surface conformal to the electrode, interfacial damage originating from side reactions between the electrolyte and the electrode remains dominant for battery failure. The design of quasi−solid electrolytes compatible with both aggressive nickel−rich cathode and lithium metal anode persists critical to the application of quasi−solid high−voltage lithium metal batteries (LMBs). Herein, a chemical/electrochemical response strategy is proposed to construct simultaneously stable cathodic and anodic interfaces relying on the synergistic effect of 1,4,7,10,13,16−hexaoxacyclooctadecane (18C6) and LiNO3. The distinctive [18C6Li]+NO3− cluster modifies electric double layer structure by specific adsorption on the electrode, thereby regulating the interfacial layer composition and construction. The NO3− on electrode preferentially decomposes to improve the interfacial performances, leaving the [18C6Li]+ to cut off the side reaction. Furthermore, the 18C6 coordinates with detrimental transition metal ions from NMC811 cathode and converts into useful clusters alleviating the knock−on effect. Thus, the quasi−solid electrolyte with 18C6 and LiNO3 enables Li||NMC811 coin cell to cycle stably over wide operation temperature (0−55 °C), especially, achieving high capacity retention of 79.2% after 300 cycles at 30 °C. This chemical/electrochemical response strategy projects new insights into the design of smart reactive electrolytes for high−voltage LMBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call