Abstract

In recent years, a number of high level applications have been reported to be tolerant to errors resulting from a sizable fraction of all single stuck-at faults in hardware. Production testing of devices targeted towards such applications calls for a test vector set that is tailored to maximize the coverage of faults that lead to functionally malignant errors while minimizing the coverage of faults that produce functionally benign errors. Given a partitioning of the fault set as benign and malignant, and a complete test vector set that covers all faults, in this paper, we formulate an integer linear programming (ILP) problem to find an optimal test vector set that ensures 100% coverage of malignant faults and minimizes coverage of benign faults.We also propose a test strategy based on selectively masking appropriate outputs of the circuit to partition the circuits at production test into three bins - malignant, benign, and fault-free. As a case study, we demonstrate the proposed ILP based test optimization and functional binning on three adder circuits: 16-bit ripple carry adder, 16-bit carry lookahead adder, and 16-bit carry select adder. We find that the proposed ILP based optimization gives a reduction of about 90% in fault coverage of benign faults while ensuring 100% coverage of malignant faults. This typically translates to an (early manufacturing) yield improvement of over 20% over what would have been the yield if both malignant and benign faults are targeted without distinction by the test vectorset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.