Abstract

MXene (Ti3C2Tx) is an important category of two-dimensional (2D) materials due to its distinctive metallic conductivity and adjustable surface chemistry. The exceptional benefits of heterointerface and defects or viods, combined with the distinct electromagnetic (EM) properties, inject boundless potential into the advancement of MXene-based absorbers for EM absorbing materials. However, conventional synthetic methods depend on chemical etching of MAX powders (Ti3AlC2) using hazardous HF or similar substances, resulting in MXene sheets with fluorine termination and limited stability in colloidal dispersions under ambient conditions. Herein, varied synthetic routes were proposed to prepare MXenes with different terminal groups by the fluoride-based salts, fluoride-free molten salts, and alkali etching. 2D MXene nanosheets with abundant surface groups are excellent EM absorbing materials, and the MXene etched by the Lewis acid CuCl2 delivered remarkable reflection loss (RL) value of −47.56 dB at 2.5 mm and broad bandwidth of 4.8 GHz due to promoted interfacial polarization. By conducting a thorough examination of the structural changes in MXenes, this study aims to propose a viable method for delaminating single-layer MXene and elucidate the EM absorption mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.