Abstract

Herein, we have developed a visible light-responsive black TiO2 photocatalytic coating with controlled formation of oxygen vacancies (OV) and Ti3+ species, crucial for enhancing photocatalytic reactions. The rational control of these semiconductor defects was achieved through plasma electrolytic oxidation (PEO), followed by NaOH post-treatment. The coating's effectiveness was evaluated by tetracycline (TC) degradation. The surface defects function as traps, reducing electron/hole recombination and forming mid-gap/localized-donor states, narrowing the band gap. Rigorous material characterization confirmed unaffected morphology and PEO coating phases, while increasing the density of OVs and Ti3+ species. As a result, TC photo-degradation was ∼3.5 times higher compared to plain PEO coatings. The material demonstrated exceptional stability and efficiency, while it was successfully intensified via peroxymonosulfate (PMS) activation, leading to high synergies (2.10). Scavenger tests revealed the existence of both radical/non-radical pathways, indicating the prevailing photocatalytic mechanism and the key differences achieved through this novel process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.