Abstract

AbstractPolymeric binders that can undergo slurry fabrication and minimize the disruption of interfacial Li+ contact are imperative for sheet‐type electrodes and solid electrolyte films in practical all‐solid‐state Li batteries (ASLBs). Although dry polymer electrolytes (DPEs) are a plausible alternative, their use is complicated by the severe reactivity of sulfide solid electrolytes and the need to dissolve Li salts. In this study, a new scalable fabrication protocol for a Li+‐conductive DPE‐type binder, nitrile‐butadiene rubber (NBR)‐LiTFSI, is reported. The less‐polar dibromomethane and more‐polar hexyl butyrate in cosolvents work synergistically to dissolve NBR and LiTFSI, while preserving Li6PS5Cl0.5Br0.5. It is found that the dispersion of NBR can be controlled by the fraction of the antisolvent (hexyl butyrate), which in turn affects the corresponding performance of the ASLBs. Sheet‐type LiNi0.70Co0.15Mn0.15O2 electrodes tailored using NBR‐LiTFSI outperform those prepared using the conventional insulating binder (NBR) in terms of capacity (163 vs 147 mA h g−1) and initial Coulombic efficiency (78.9 vs 70.4%), which is attributed to the facilitated interfacial Li+ transport, as confirmed by 6Li nuclear magnetic resonance and electrochemical measurements. Moreover, NBR‐LiTFSI is functional at 70 °C and in a graphite anode. Finally, the promising performance of pouch‐type LiNi0.70Co0.15Mn0.15O2/graphite ASLBs is also demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.