Abstract

An iron single-atom catalyst, composed of robust FeN4 moieties anchored on a nitrogen-doped porous carbon matrix (Fe-SAC/NC), has been developed via a surfactant-coordinated metal-organic framework (MOF) approach for application in heterogeneous electro-Fenton (HEF) process. The cohesive interaction between the surfactant and MOF precursor enabled the formation of abundant and stable FeN4 moieties. The Fe-SAC/NC-catalyzed HEF allowed the complete degradation of 2,4-dichlorophenol with low iron leaching (1.2 mg L-1), being superior to nanoparticle catalyst synthesized without surfactant. The experiments and density functional theory (DFT) calculations demonstrated the dominant role of single-atom FeN4 sites to activate the electrogenerated H2O2 yielding •OH. The dense FeN4 moieties allowed harnessing the modulated electronic structure of the SAC to facilitate the electron transfer, whereas the adjacent pyrrolic N enhanced the adsorption of target organic pollutants. Moreover, the excellent catalysis, recyclability and viability of the Fe-SAC/NC were verified by successfully treating several organic pollutants even in urban wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call