Abstract

Silver nanowires (AgNWs) have been considered as a promising candidate for transparent stretchable conductors (TSCs). However, the strong interface mismatch of stiff AgNWs and elastic substrates leads to the stress concentration at their interface and ultimately the low stretchability and poor durability of TSCs. Here, to address the interfacial mismatch of AgNWs-based TSCs we put forward a universal interface tailoring strategy that introduces the mercapto compound as the intermediate cross-linked layer. The mercapto compound strongly interacts with the AgNWs, forming a dense protective layer on their surface to improve their corrosion resistance, and reacts with the polymer substrate, forming a buffer layer to release the concentrated stress. As a result, the optimized TSCs showed superior stretchability (160%), exceptional durability (230 000 cycles), competent optoelectrical performance (18.0 ohm·sq-1 with a transmittance of 86.5%), and prominent stability. This work provides clear guidance and a strong impetus for the development of transparent stretchable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.