Abstract
Reversible resistance states were extensively observed in thin film systems, and their physical properties were in most cases determined by the electric behavior of the dielectric layer placed between contacts. Here we include SnO2 nanoparticles on TiO2 dielectric films, inducing modifications of the resistive switching behavior. We show that the choice of oxide nanoparticles with dielectric constant smaller than the dielectric constant of the main oxide film guides conductive channels, increasing the extension of the Fowler–Nordheim (tunneling) conduction regime during their electroforming as the density of nanoparticles rises. It is found that the SnO2 nanoparticles show reduced impact on the resistive switching response of devices produced following this methodology. The formation of Ti4O7 conductive channels is discussed based on electric measurements as well as on scanning probe and electron microscopy techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.