Abstract

The combination of oleogelators in oil structuring has an untapped potential, since effective pairs have usually been found by serendipity. The aim of this work was to evaluate the combination of berry (BEW) or sunflower wax (SHW) with glycerol monostearate (GMS) in flaxseed oil (FXO) at 5 and 25 °C. The thermal and mechanical properties, microstructure, and stability of oleogels were investigated. Self-standing and translucent gels were obtained from BEW in FXO. However, the mixture BEW:GMS resulted in a decrease of dynamic moduli. Moreover, changes in the crystal network and a reduction of oil binding capacity were noticed. Thus, the GMS prevented the complete organization of BEW in polyunsaturated chains of FXO. Conversely, a positive interaction was found for GMS:SHW, since both alone were not able to impart the structure in FXO. Interestingly, gel was formed with improved properties, even with a small addition of GMS, although an ideal ratio of 1:1 (GMS50:50SHW) was found. Oxidative stability analysis showed that all gels resembled the behavior of liquid oil (~12.00 meqO2/kg) over 30 days storage. Therefore, semi-solid systems with nutritional and techno-functional claims were created by using waxes and fatty-acid derivative oleogelator in a rational fashion; this opened the opportunity to tailor oleogel properties.

Highlights

  • Solid fats are commonly used in processed foods to confer technological and sensory properties desired by the consumer [1]

  • Mono and multicomponent oleogels were prepared with berry wax (BEW), sunflower wax (SHW), and glycerol monostearate (GMS) as oleogelators in flaxseed oil (FXO)

  • Temperature exerted an influence on the structuration of the monocomponent GMS100 (Figure S1a–d-1) and multicomponent oleogels of berry wax

Read more

Summary

Introduction

Solid fats are commonly used in processed foods to confer technological and sensory properties desired by the consumer [1]. Trans, saturated, and recently interesterified fats have been associated with negative health related effects, such as increasing the risk of obesity, diabetes, cancer, and cardiovascular diseases [2,3]. In this context, oleogelation alters the physical state of vegetable oils (mainly composed of unsaturated fatty acids), providing a semi-solid characteristic, without changing their chemical composition [4]. Oleogels are formed by the entrapment of organic solvent (i.e., vegetable oils) within a three-dimensional network, which can be formed by the crystallization of oleogelators [5]. Polar moieties are stabilized by H-bonding or other polar-polar interactions, while nonpolar moieties occur with induced dipole–dipole interactions (London dispersion force) [6]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call