Abstract

Porous ion-selective membranes are promising alternatives for the expensive perfluorosulfonic acid membranes in redox flow batteries. In this work, novel non-ionic porous polyvinylidene fluoride-hexafluoro propylene membranes are designed for iron-lead single-flow batteries. The membranes are prepared using a multiple template approach, involving simultaneously using polyethylene glycol and dibutyl phthalate (DBP) as pore-forming templates. Their porous structure is finely tuned by adjusting the ratio of the two templates. As a result, dual-porous membranes bearing both macro and micropores are obtained. The H3520 membrane with modified porous structure attains a high proton conductivity of 43.5 mS·cm-1 and a relatively low ferric ion diffusion constant (8.61 × 10-8 cm2·min-1) and demonstrates the best balance between these performance-determining parameters (selectivity 5.04 × 105 S·min·cm-3, higher than that of the N115 membrane). Besides, performance tests of the iron-lead single-flow single cells equipped with the dual-porous membranes show a high energy efficiency, exceeding 87.2% at its rated current density, and outstanding cycling stability over 200 charge-discharge cycles. Altogether, the mixed template method presents a promising strategy to prepare high-performance and low-cost non-ionic membranes for redox flow batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call