Abstract

Although dispersity (Đ) plays an important role in controlling polymer properties, there are very few chemical methods that can sufficiently tune it. Here we report a simple, batch, and environmentally benign photoinduced iron-catalyzed ATRP methodology that enables the efficient control of Đ for both homopolymers and block copolymers. We show that by judiciously varying the concentration of the FeBr3/TBABr catalyst, a range of dispersities can be obtained (1.18 < Đ < 1.80) while maintaining monomodal molecular weight distributions. High end-group fidelity was confirmed by MALDI-ToF-MS and was further supported by the efficient synthesis of in situ block copolymers where the dispersity of the second block could be controlled upon demand. Importantly, through the use of low ppm amounts of the catalyst, perfect temporal control could be attained during intermittent "on/off" cycles. This work considerably expands the chemical toolbox for tuning Đ of homo- and block copolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.