Abstract

Despite its many advantages, poly(lactic acid)’s (PLA’s) vast commercialization as a packaging material has been hindered by its numerous drawbacks such as low melt elasticity, slow crystallization, and low gas barrier properties. In this pioneering research, we introduce the concept of in situ microfibrillation process as an efficient, cost-effective, and environmentally friendly technique for the enhancement of PLA films’ properties. In situ microfibrillar composites (MFCs) with PLA matrix and different (petroleum and bio-based) polyamide (PA) microfibrils were produced via a fast and simple melt extrusion and hot stretching process. Morphological observations demonstrated the successful transformation of the dispersed PA phase into very long and flexible microfibrillar shapes with diameters of nearly 200nm. Shear rheological investigations proved that the MFCs had dramatically improved melt elasticities compared with the pure PLA. The crystallization kinetics of the PLA was also significantly improved after the microfibrillation process which was attributed to the heterogeneous crystal nucleation effects of the microfibrils. Gas permeability measurements confirmed substantial reductions in the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) of the PLA film after the microfibrillation process followed by isothermal annealing. The MFCs also showed significantly improved tensile properties in comparison with the PLA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.