Abstract

AbstractHybrid nanoparticles combining plasmonic and catalytic components have recently gained interest for their potential use in sunlight‐to‐chemical energy conversion. However, a deep understanding of the structure–performance that maximizes the use of the incoming energy remains elusive. Here, a suite of Au and Pd based nanostructures in core–shell and core‐satellites configurations are designed and their photocatalytic activity for Hydrogen (H2) generation under sunlight illumination is tested. Formic acid is employed as H2 source. Core‐satellite systems show a higher enhancement of the reaction upon illumination, compared to core–shell ones. Electromagnetic simulations reveal that a key difference between both configurations is the excitation of highly localized and asymmetric electric fields in the gap between both materials. In this scheme, the core Au particle acts as an antenna, efficiently capturing visible light via the excitation of localized plasmon resonances, while the surrounding Pd satellites transduce the locally‐enhanced electric field into catalytic activity. These findings advance the understanding of plasmon‐driven photocatalysis, and provide an important benchmark to guide the design of the next generation of plasmonic bimetallic nanostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call