Abstract

The controllable growth of high-quality transition metal dichalcogenides (TMDs) is crucial for their device applications, which rely on the atomic and quantitative understanding of the growth mechanism of TMDs. In this work, we propose a comprehensive picture of the growth of WS2 nanosheets via Monte Carlo simulation, and an extension of diffusion-limited growth under transition state theory is developed to describe heteroepitaxy growth of WS2. Theoretical results are in good agreement with the results of chemical vapor deposition that growth temperature dominates growth processes leading to samples with various densities of vacancy defects. The vacancy defects modify the photoluminescence and ferromagnetic behavior. Our work provides a pathway toward realizing controllable physical properties in 2D materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.