Abstract

Wrinkled graphene has been emerging as a hot topic of interest due to its easily induced physical changes accompanied by changes in its material behavior. However, the wrinkling pattern of graphene and its relevant properties remain poorly understood. Here we employ molecular dynamics simulations to model the behavior of graphene under periodic, torsional wrinkling and elucidate the effect of torsion pattern, torsion velocity, and hole size on the wrinkling characteristics of a large graphene sheet. Simulation results show that gross control over the wrinkling pattern is feasible via manipulation of torsion direction and relative hole size, with fine-tuning of the wrinkle formation possible by control of the relative torsion speed of each hole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call