Abstract
In this work multi-magnetron sputtering stand was used for the deposition of the mixed oxides thin films based on HfO2 and TiO2. In order to obtain various material composition the power released to each magnetron (containing metallic hafnium and titanium targets) was precisely selected. Structural, surface, optical, electrical and mechanical properties of as-deposited coatings were analyzed. Depending on the hafnium content in the deposited thin films various types of the microstructure was obtained, i.e. HfO2-monoclinic, amorphous and TiO2-rutile. Increase of Ti content above 28at. % in the as-prepared mixed oxides coatings caused their amorphization. It was found that with an increase of Ti content in prepared coatings their surface roughness and simultaneously water contact angle decreased. Performed measurements of electrical properties revealed that the lowest leakage current density in the range of 10−7–10−8A/cm2 was obtained for amorphous coatings. Moreover, the tailoring of the dielectric constant was possible by a proper selection of material composition and microstructure of the deposited thin films. Average transparency in the visible wavelength region was in the range of ca. 79–86%. The influence of material composition and structure on shifting of the fundamental absorption edge and optical band gap energy was also observed. The refractive index increased with an increase of Ti content, while extinction coefficient was the lowest for amorphous coatings. Additionally, hardness values were dependent on the material composition and optical packing density and were in the range from 7.6GPa to 10.1GPa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.