Abstract

Single-component materials with white-light emission are ideal for lighting applications. However, it is very challenging to achieve white luminescence in single-dopant activated solid phosphors. Herein, white NaLi3 Si1- x O4 :Eu2+ materials are designed via defect engineering and synthesized by reducing the Si content (0.15 ≤ x≤ 0.25). Stochiometric NaLi3 SiO4 :Eu2+ exhibits a narrow-band blue emission at 469nm, ascribed to the 5d → 4f transition of Eu2+ at highly symmetric cuboid Na sites, while samples with Si content reduced by 15-25% display white emission with two peaks at 472nm and 585nm. The newly appeared broadband yellow peak arises from charge-transfer transitions involving Eu2+ and nearby defects, as verified by an unusual bandwidth, a large Stokes shift, and a long decay time. A single-component white light-emitting diode device is fabricated by employing a white phosphor to demonstrate a color-rendering index of 82.9. This result provides a new design strategy for single-component white-light materials with broad-band defect-induced charge-transfer emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.