Abstract

Silicene-based nanostructures are highly promising for future applications in electronics as silicon is an important element for conventional semiconductor industry. In our recent works, we have studied the effect of external electric filed, strain and metal adatoms on tailoring the structural, energetic and electronic properties of silicene-based nanostructures using first-principles and tight-binding methods. We find that half-metallicity can be realized in zigzag silicene nanoribbons when applying electric field across the nanoribbon width. Under small tensile strain, some armchair silicene nanoribbons are predicted to have linear energy dispersion around the Fermi level. And strain-induced structural phase transitions are observed in silicene bilayers in which strong covalent interlayer bonds form. When metal atoms are adsorbed on silicene, several metal adatoms obtain a larger binding energy than the cohesive energy of the bulk metal and the bonding between the metal atoms and silicene can be ionic or covalent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call