Abstract

The aim of the present study is the fabrication of electrochemical sensor and sorbent for toxic Cd(II) ion using ion-imprinting technique on vinyl-functionalized multiwalled carbon nanotube. Multiwalled carbon nanotube-based ion-imprinted polymer (MWCNT-IIP) were synthesized using meth acrylic acid as the functional monomer, N,N′methylene-bis-acrylamide as the cross linking agent, and potassium peroxo disulphate as an initiator. The template and porogen used were cadmium chloride and water. To know the importance of MWCNT, ion-imprinted polymer without MWCNT was also prepared. For the purpose of comparison, non-imprinted polymers were also synthesized. The synthesized products were analyzed by FT-IR, XRD, TEM, EDAX, and TGA. An electrochemical sensor was made up by modifying platinum electrode with MWCNT-IIP. Experimental factors that control the routine of the sensor were investigated and optimized. Under optimal conditions, a calibration curve was obtained with a detection limit of 0.03 μM by using differential pulse voltammetric technique. Selectivity studies show irrelevant significance with Zn (II), Cu (II), and Ni (II) ions. The feasibility of modified platinum electrode shows a prospective application in real water sample collected from a lake, pigments, cosmetics, and fertilizers. The synthesized nanostructured material is also used for the extraction of Cd(II) ion from real water samples. The maximum adsorption of Cd(II) by various imprinted and non-imprinted sorbents was calculated, and it was found that maximum adsorption takes place at pH 6. The kinetic studies show that the adsorption of Cd(II) increases with time and reaches equilibrium at 70 min and the kinetic data follow pseudo-second-order kinetics. The adsorption data fitted to the Langmuir adsorption model which confirms the monolayer formation of an IIP layer on MWCNT surface. The selectivity co-efficient of the imprinted sorbent shows high selectivity and specificity towards Cd(II) ion than other metal ions.

Highlights

  • Metal pollution in the environment is generally due to the industrial development (Das et al 2016)

  • Electrochemical studies were carried out with an electrochemical work station (Biologic SP200), and cyclic voltammetry and differential pulse voltammetry technique were conceded with platinum wire auxiliary electrode, saturated calomel reference electrode, and a platinum electrode modified with imprinted MWCNT-IIP which was used as the working electrode

  • The main peaks of bulk IIP and MWCNT-CH=CH2 were present in the spectrum of MWCNT-IIP which confirms the formation of an IIP layer on MWCNT-IIP

Read more

Summary

Introduction

Metal pollution in the environment is generally due to the industrial development (Das et al 2016). There are lots of methods which reported the detection of cadmium ions such as Aravind and Mathew Journal of Analytical Science and Technology (2018) 9:22 atomic absorption spectrometry (Parham et al 2009), inductively coupled plasma mass spectrometry (D’Ilio et al 2005), and inductively coupled plasma atomic emission spectroscopy (Zougagh 2002). Most of these techniques are even though perceptive and precise but are costly and laborious and cause difficulties for in situ sensing. It is vital to build up an uncomplicated, fast, and costeffective method for Cd(II) ion detection

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call