Abstract

This research aimed to create multifunctional cellulose fibres with water- and oil-repellent, self-cleaning, and flame retardant properties. A sol mixture of fluoroalkyl-functional siloxane, organophosphonate and methylol melamine resin was applied to cotton fabric by the pad-dry-cure method. Successful coating was verified by atomic force microscopy and Fourier transform infrared spectroscopy. The functional properties of the coated fibres were investigated using the static contact angles of water and n-hexadecane, the water sliding angles, the vertical test of flammability, the limiting oxygen index, and simultaneous thermal analysis. The results reveal that a homogeneous composite inorganic–organic polymer film formed on the cotton fabric surface exhibited the following properties: static contact angle of water of 150° and of n-hexadecane of 128°, water sliding angle of 10°, limiting oxygen index of 34 %, and high thermal stability. These results demonstrate the synergistic activity of the compounds in the coating, which resulted in the creation of a “lotus effect” on the fabric surface as well as excellent flame retardancy and thermal stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.