Abstract

A structured optical field with controllable three-dimensional intensity and multiple polarization singularities is demonstrated by utilizing a combination of a radially polarized (RP) beam, a designed phase mask, and a high numerical aperture lens. Owing to the tight focusing property of RP beams as well as the interference of multiple linearly polarized non-coplanar plane waves, various lattice-like optical structures can emerge at the focal plane with multiple structured singularities in the transverse plane and optical needle array along with propagation. Compared with recently proposed phase and polarization engineering methods with spatial light modulators, the method presented here is convenient and flexible, and can easily realize the generation of V-point and C-point lattices. More importantly, a structured longitudinal field, namely, an optical needle array, with steerable positive and reverse energy flows may be extensively applied in multi-particle acceleration and trapping, optical microscopes, and second-harmonic generation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.