Abstract
The microstructure evolution and austenite stability of Rare Earth (RE)-alloyed Transformation Induced Plasticity (TRIP) steels subjected to intercritical annealing and isothermal bainitic transformation have been investigated for superior strength-ductility performance. Structure morphology, austenitizing temperature and phase proportion during thermomechanical process were carefully compared, confirming that minor RE additions indeed refined the microstructure, and affected the thermodynamics of austenite and bainite transformation. Austenitizing ranges of TRIP steels were lifted with increasing RE content then stabilized when exceeding 360 ppm; the intercritical austenite reduced but dissolved more CMn atoms, hence the bainite transformation in RE-alloyed TRIP steels was significantly inhibited, which elevated the retained austenite quantity and thermal stability simultaneously. Therein, more austenite nucleated from the structure fragments with RE-refined lamellar morphologies and strictly grew into acicular counterparts or aggregated into clusters. The aggregated austenite, composed of several subgrains with [011¯] coaxial relations or Σ3 60°〈111〉 misorientation but coherent interfaces, were engulfed or being swallowed up by coalescing ferrites in sluggish growth, guaranteeing the higher mechanical stability than intergranular austenite. In this study, the product of strength and elongation of TRIP steels after optimized RE-alloying was increased by 38% as compared to that without RE additions. The micro-alloying effect of RE elements in TRIP steels highlights the innovations of new-generation automotive steels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.