Abstract

In the context of emerging methods to control particle organization in particle-matrix composite materials, we explore, using finite element analysis, how to modulate the material bulk mechanical stiffness. Compared to a composite containing randomly distributed particles, material stiffness is enhanced 100-fold when filler particles are aligned into linear chains lying parallel to the loading direction. In contrast, chains aligned perpendicular to that direction produce negligible stiffness change. These outcomes reveal how zigzag chains, which provide intermediate results, can modulate stiffness. The stiffness decreases gradually with increasing zigzag angle θ over a range spanning 2 orders of magnitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.