Abstract

We construct optimal time-local control pulses based on a multipartite entanglement measure as target functional. The underlying control Hamiltonians are derived in a purely algebraic fashion, and the resulting pulses drive a composite quantum system rapidly into that highly entangled state which can be created most efficiently for a given interaction mechanism, and which bears entanglement that is robust against decoherence. Moreover, it is shown that the control scheme is insensitive to experimental imperfections in first order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.