Abstract

Different divalent cation substituted Co-ferrite (MXCo1−XFe2O4, where M = Mg2+, Ni2+, Cu2+, Zn2+, with x = 0.20 and 0.75) nanoparticles were synthesized by sol–gel method and were annealed at 900 °C in air. After annealing, grain growth was observed for all the samples. With the substitution of Mg2+, Ni2+ and Cu2+ with x = 0.20, the magnetization of the as-prepared and the annealed samples was decreased from that of the Co-ferrite whereas Zn2+ substitution enhanced the magnetization. The highest magnetization values of 79.9 and 92.9 emu/g at 300 and 60 K respectively were observed for the Zn2+ substituted annealed sample with x = 0.20. For higher concentration of x = 0.75, the magnetization value was further decreased in all the samples and the lowest magnetization value of 5.1 emu/g was observed in the Zn2+ substituted annealed sample with x = 0.75 at 300 K. The coercivity was reduced in the samples except for the Cu2+ substituted sample. In the Cu2+ substituted sample with x = 0.75, the highest coercivity of 1.43 kOe at 300 K was observed after annealing. The changed cation distribution in the spinel structure, ionic magnetic moment and anisotropy compared to the Co2+ in these nanomaterials can explain the observed magnetic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.