Abstract

In this work, a novel approach was introduced to reduce the oxide nanoparticles and extract the pure metal from them. Accordingly, La0.8Sr0.2MnO3 nanoparticles were prepared through the conventional citrate gel method, and then they were reduced using a solvothermal method by ethylene glycol as a reductive agent. Chemical species, magnetic parameters, crystal structures, and morphological properties of the fabricated structures were deeply studied by Fourier transform infrared (FT-IR), vibrating sample magnetometer (VSM), X-ray powder diffraction (XRD), and field emission scanning electron microscopy (FE-SEM) analyses, respectively. Noticeably, the curves of the diffuse reflection spectroscopy (DRS) suggested a lower energy gap for the La0.8Sr0.2MnO3/La/Sr nanocomposite. Finally, the microwave absorbing characteristics of the specimens were scrupulously investigated using the polystyrene (PS) and polyvinylidene fluoride (PVDF) media. It was found that La0.8Sr0.2MnO3/La/Sr blended in PVDF gained a remarkable reflection loss of 94.68 dB at 15.31 GHz with an only thickness of 1.75 mm, meanwhile displaying an efficient bandwidth as wide as 6.74 GHz (reflection loss (RL) > 10 dB). Noteworthy, La0.8Sr0.2MnO3/PS illustrated a considerable efficient bandwidth of 2.36 GHz (RL > 20 dB). Moreover, La0.8Sr0.2MnO3 composites demonstrated more than 88% electromagnetic interference shielding efficiency (SE) along the X and Ku-band frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.