Abstract

We investigate the usage of polyelectrolyte complex materials for water remediation purposes, specifically their ability to remove nanoplastics from water, on which there is currently little to no prior research. We demonstrate that oppositely charged random copolymers are effective at quantitatively removing nanoplastic contamination from aqueous solution. The mechanisms underlying this remediation ability are explored through computational simulations, with corroborating quartz crystal microbalance adsorption experiments. We find that hydrophobic nanostructures and interactions likely play an important role.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.