Abstract

NiFe-(oxy)hydroxides are the most active transition metal oxide electrocatalysts for oxygen evolution reaction (OER) under the alkaline media. Herein, we controllably manipulated oxygen vacancy (VO)-tunable NiFe-(oxy) hydroxides that their OER performances possessed a volcano-type relationship with VO concentration, positively-correlated with Ni3+/Ni2+ ratio. Theoretical simulations further unearthed the enhanced activation and dissociation of H2O by the inserting of VO. As a result, the optimal sample featuring the Ni3+/Ni2+ ratio of 30.3 % and VO of 23.8 % exhibited the overpotential of 243 mV at the current density of 100 mA cm–2, simultaneously lasting 120 h durability without any attenuation, exceding the most reported NiFe-(oxy)hydroxides. This work offers an innovative view to understand the OER performance using hypervalent Ni ratio induced by VO defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call