Abstract
Water adsorption capacities of various adsorbents reported in the literature were investigated to define a hydrophobicity index that was plotted vs. water capacity. In this plot, logarithmic curves were proposed to be used as indicators of performance limits of adsorbents, especially for adsorption heat pumps. In spite of their useful adsorption properties, zeolites generally exhibited quite low hydrophobicity, remaining well below the logarithmic curve. In this study, the use of composites of zeolite NaY was examined both theoretically and experimentally for improvements in the water capacity and hydrophobicity. Salt impregnation and hydrothermal synthesis experiments were performed to prepare composites of zeolite NaY with LiCl/MgCl2 salts and activated carbon, respectively. Water capacity and hydrophobicity of zeolite NaY composites were generally superior to those of pure zeolite. Zeolite composites may be advantageous for enhancing adsorption capacity and hydrophobicity of zeolites while eliminating low stability and slow adsorption kinetics of other adsorbents. Interface between two different phases might indicate another opportunity to provide improved adsorption properties for zeolite composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.