Abstract
By using thermo-mechanical processing, 99.996 wt.% pure Ni with different grain boundary characteristics were fabricated (Sample #1, 700 ℃ × 10 h + cold rolling reduction 50%+ 650 ℃ × 2 h; Sample #2, 700 ℃ × 10 h + cold rolling reduction 50%+ 900 ℃ × 5 min). Hydrogen embrittlement sensitivity of the two samples was determined by using high-pressure hydrogen charging, low strain rate tensile test and SEM fractography. Compared with Sample #1, hydrogen embrittlement index of Sample #2 increased from 0.52 to 0.71. The effects of grain size, grain boundary type and grain boundary curviness on hydrogen embrittlement of pure Ni were discussed. The results indicate that: 1) special grain boundaries including twin grain boundaries may have a marginal effect on tailoring hydrogen embrittlement resistance in pure Ni; 2) increasing grain boundary curviness is an effective way to improve hydrogen embrittlement resistance of Ni.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.