Abstract

The radiation-induced grafting is used to prepare a variety of anion-exchange membranes (AEM) based on poly(ethylene-co-tetrafluoroethylene) (ETFE) utilizing a reversible addition-fragmentation chain transfer (RAFT) agent. The copolymerization process is controlled by the RAFT agent, resulting in AEMs with a restricted molecular weight dispersion. As a result, RAFT-AEMs exhibit decreased water uptake and reduced swelling. A significant improvement in thermal and mechanical characteristics is evidenced, while the conductivity remains practically unaltered. Anion-exchange membrane fuel cell (AEMFC) tests revealed that conventional RIG-AEMs and RAFT-AEMs with low RAFT content (5 wt%) have comparable beginning-of-life performances (∼0.95 W cm−2). However, for higher RAFT contents, the performance trends to decrease indicating an imbalance in water management. Furthermore, short-term stability tests suggest that RAFT-AEMs are able to operate highly stable, with a conductivity rate loss of 0.05% h−1, which represents an improvement of 160% in comparison to conventional RIG-AEM. AFM analysis demonstrated that structural ordering molecular and morphology tailor the fundamental properties of ETFE-based AEMs, combining enhanced performance and stability for alkaline fuel cell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.